
AutoNeRF: Training Implicit Scene Representations with Autonomous Agents

Pierre Marza 1* Laetitia Matignon2 Olivier Simonin1 Dhruv Batra3,5

Christian Wolf4 Devendra Singh Chaplot3
1INSA Lyon 2UCBL 3Meta AI 4Naver Labs Europe 5Georgia Tech

Project Page: https://pierremarza.github.io/projects/autonerf/

Abstract

Implicit representations such as Neural Radiance Fields
(NeRF) have been shown to be very effective at novel view
synthesis. However, these models typically require man-
ual and careful human data collection for training. In this
paper, we present AutoNeRF, a method to collect data re-
quired to train NeRFs using autonomous embodied agents.
Our method allows an agent to explore an unseen envi-
ronment efficiently and use the experience to build an im-
plicit map representation autonomously. We compare the
impact of different exploration strategies including hand-
crafted frontier-based exploration, end-to-end and modular
approaches composed of trained high-level planners and
classical low-level path followers. We train these models
with different reward functions tailored to this problem and
evaluate the quality of the learned representations on four
different downstream tasks: classical viewpoint rendering,
map reconstruction, planning, and pose refinement. Em-
pirical results show that NeRFs can be trained on actively
collected data using just a single episode of experience in
an unseen environment, and can be used for several down-
stream robotic tasks, and that modular trained exploration
models outperform other classical and end-to-end base-
lines.

1. Introduction
Exploration is a key challenge in building autonomous nav-
igation agents that operate in unseen environments. In
the last few years, there has been a significant amount of
work on training exploration policies to maximize cover-
age [6, 9, 37], find goals specified by object categories [17,
5, 25, 34, 36], images [56, 8, 18, 28] or language [3, 21, 30]
and for embodied active learning [7, 4]. Among these meth-
ods, modular learning methods have shown to be very effec-
tive at various embodied tasks [6, 5, 11, 15]. These methods
learn an exploration policy that can build an explicit seman-
tic map of the environment which is then used for planning

*Work done during an internship at Meta AI
Correspondence: pierre.marza@insa-lyon.fr

Autonomous explorative rollout

Downstream tasks: reconstruction,
planning, mapping, rendering, pose

refinement

NeRF Training

Figure 1: We propose a method for automatically generating
3D models of a scene by training NeRFs from data collected by
autonomous agents. We compare classical and RL-trained ex-
ploration policies, with different reward definitions and evaluate
the implicit representations on reconstruction, planning, mapping,
rendering, and pose refinement.

and downstream embodied AI tasks such as Object Goal or
Image Goal Navigation.

Concurrently, in the computer graphics and vision com-
munities, there has been a recent but large body of work
on learning implicit map representations, particularly based
on Neural Radiance Fields (NeRF) [29, 31, 14, 51, 47].
Prior methods [43, 45, 54, 55] demonstrate strong perfor-
mance in novel view synthesis and are appealing from a
scene understanding point of view as a compact and con-
tinuous representation of appearance and semantics in a 3D
scene. However, most approaches building implicit repre-
sentations require data collected by humans [29, 43, 55].
Can we train embodied agents to explore an unseen envi-
ronment efficiently to collect data that can be used to cre-
ate implicit map representations or NeRFs autonomously?

https://pierremarza.github.io/projects/autonerf/
mailto:pierre.marza@insa-lyon.fr

Mesh Generation BEV map generation
(Accuracy, P, R)

Camera
Pose

Refinement
(Convergence rate)

New view
rendering

(PSNR, SSIM, LPIPS,
Sem acc, mIoU)

Time

Trained NeRF Model

Planning
(Success, SPL)

Figure 2: Downstream tasks — the model trained from autonomously collected data is used for several downstream tasks related to
robotics: Mesh generation for the covered scene (color or semantic mesh); Birds-eye-view map generation and navigation/planning on this
map; new view generation of RGB and semantic frames; camera pose refinement (visual servoing).

In this paper, our objective is to tackle this problem of ac-
tive exploration for autonomous NeRF construction. If an
embodied agent is able to build an implicit map representa-
tion autonomously, it can then use it for a variety of down-
stream tasks such as planning, pose estimation, and naviga-
tion. Just a single episode or a few minutes of exploration in
an unseen environment can be sufficient to build an implicit
representation that can be utilized for improving the per-
formance of the agent in that environment for several tasks
without any additional supervision.

In this work, we introduce AutoNeRF, a modular pol-
icy trained with Reinforcement Learning (RL) that can ex-
plore an unseen 3D scene to collect data for training a NeRF
model autonomously (Figure 1). While most prior work
evaluates NeRFs on rendering quality, we propose a range
of downstream tasks to evaluate them (and indirectly, the
exploration policies used to gather data for training these
representations) for Embodied AI applications. Specifi-
cally, we use geometric and semantic map prediction ac-
curacy, planning accuracy for Object Goal and Point Goal
navigation and camera pose refinement (Figure 2). We show
that AutoNeRF outperforms the well-known frontier explo-
ration algorithm as well as state-of-the-art end-to-end learnt
policies, and also study the impact of different reward func-
tions on the downstream performance of the NeRF model.

2. Related Work
Neural fields — represent the structure of a 3D scene
with a neural network. They were initially introduced
in [27, 33, 10] as an alternative to discrete representations
such as voxels [26], point clouds [13] or meshes [16]. Neu-
ral Radiance Fields (NeRF) [29] then introduced a differen-
tiable volume rendering loss allowing to supervise 3D scene
reconstruction from 2D supervision, achieving state-of-the-
art performance on novel view synthesis. Follow-up work
has addressed faster training and inference [31, 14], or train-
ing from few images [51]. [47] references advances in this
growing field.

Neural fields in robotics — implicit representations are not

limited to novel view synthesis, they have also been pro-
posed for real-time SLAM [41, 58, 57]. Initial work [41] re-
quired RGB-D input and was deployed on limited-size envi-
ronments. [58] introduced a hierarchical implicit represen-
tation to represent larger scenes, and [57] now only requires
RGB input. Extensions incorporate semantics: [54] aug-
mented NERFs with a semantic head trained from sparse
and noisy 2D semantic maps. Implicit representations have
also been used to represent occupancy, explored area, and
semantic objects to navigate towards [24], or as a represen-
tation of the density of a scene for drone obstacle avoid-
ance [1]. They have been used for camera pose refinement
through SGD directly on a loss in rendered pixel space [50].
In contrast to the literature, we investigate training these
representations from data collected by autonomous agents
directly and explore the effect of the choice of policy on
downstream robotics tasks.

Active learning for neural fields — has not yet been ex-
tensively studied. Most works focus on fixed datasets of 2D
frames and tackle the active selection of training data. Ac-
tiveNeRF [32] estimates the uncertainty of a NeRF model
by expressing radiance values as Gaussian distributions.
ActiveRMAP [52] minimizes collisions and maximizes an
entropy-based information gain metric. These methods tar-
get rather small scenes in non-robotic scenarios, either sin-
gle objects or forward-facing only. In contrast, we start
from unknown environments and actively explore large in-
door scenes requiring robotic exploration policies capable
of handling complex scene understanding and navigation.

Autonomous scene exploration — visual navigation and
exploration are well-studied topics in robotics. It is
generally defined as a coverage maximization problem,
a well-known baseline being Frontier Based Exploration
(FBE) [49]. Different variants exist [12, 20, 48] but the core
principle is to maintain a frontier between explored and un-
explored space and to sample points on the frontier. Several
learning-based exploration approaches are also explored in
recent work [6, 9, 37, 35]. We target scene exploration with

Semantic Map

Mapping

Local PolicyAction

Global Policy

Waypoint

Environment Trajectory, data collection:
(Ego RGB-D, odometry)

Reward definition

Figure 3: We adapted the modular policy in [5]: a mapping mod-
ule generates a semantic and occupancy top-down map from ego-
centric RGB-D observations and sensor pose. A high-level policy
trained with RL predicts global waypoints, which are followed by
a handcrafted low-level policy (fast marching). The sequence of
observations comprises the data input to NeRF training.

a different goal than maximizing vanilla coverage: we study
how different definitions of exploration impact the quality
of an implicit scene representation.

3. Background
To make the paper self-contained, we first briefly recall rel-
evant background on modular exploration policies, and neu-
ral radiance fields.

3.1. Modular exploration policies
The trained policy aims to allow an agent to explore a 3D
scene to collect a sequence of 2D RGB and semantic frames
as well as camera poses, that will be used to train the con-
tinuous scene representation. Following [5, 6], we adapt a
modular policy composed of a Mapping process that builds
a semantic map, a Global Policy that outputs a global way-
point from the semantic map as input, and finally, a Local
Policy that navigates towards the global goal, see Figure 3.

Semantic Map — a 2D top-down map is maintained at each
time step t, with several components: (i) an occupancy com-
ponent mocc

t ∈ RM×M stores information on free naviga-
ble space; (ii) an exploration component mexp

t ∈ RM×M

sets to 1 all cells which have been within the agent’s field
of view since the beginning of the episode; (iii) a semantic
component msem

t ∈ RS×M×M , where M×M is the spa-
tial size and S denotes the number of channels storing infor-
mation about the scene. Additional maps store the current
and previous agent locations. All maps are updated at each
timestep from sensor information. Structural components
are updated by inverse projection of the current depth ob-
servation and pooling to the ground plane, a similar compu-

tation is done for the exploration component. The semantic
maps additionally use predictions obtained with Mask R-
CNN [19]. Egocentric maps are integrated over time taking
into account agent poses estimated from sensor information.
Policies — intermediate waypoints are predicted by the
Global Policy, a convolutional neural network taking as in-
put the stacked maps (we follow [5]) and is trained with
RL/PPO [39]. A Local Policy navigates towards the way-
point taking discrete actions for 25 steps following the path
planned using the Fast Marching Method [40].

3.2. Neural radiance fields

Vanilla Semantic NeRF — Neural Radiance Fields [29]
are composed of MLPs predicting the density σ, color c and,
eventually as in [54], the semantic class s of a particular 3D
position in space x ∈ R3, given a 2D camera viewing di-
rection ϕ ∈ R2. NeRFs have been designed to render new
views of a scene provided a camera position and viewing
direction. The color of a pixel is computed by perform-
ing an approximation of volumetric rendering, sampling N
quadrature points along the ray. Given multiple images of a
scene along with associated camera poses, a NeRF is trained
with Stochastic Gradient Descent minimizing the difference
between rendered and ground-truth images.
Semantic Nerfacto — we leverage recent advances to train
NeRF models faster while maintaining high rendering qual-
ity and follow what is done in the Nerfacto model from [44],
that we augment with a semantic head. The inputs x and
ϕ are augmented with a learned appearance embedding
e ∈ R32. Both x and ϕ are first encoded using respectively
a hash encoding function h as x̃ = h(x) and a spherical
harmonics encoding function sh as ϕ̃ = sh(ϕ). x̃ is fed to
an MLP fd predicting the density at the given 3D position,
yielding (σ,hd) = fd(x̃; Θd), where hd is a latent repre-
sentation. hd is fed to another MLP model fs that outputs a
softmax distribution over the S considered semantic classes
as s = fs(hd; Θs) where s ∈ RS . Finally, hd, ϕ̃ and e are
the inputs to fc that predicts the RGB value at the given 3D
location, c = fc(hd, ϕ̃, e; Θc) where c ∈ R3.

4. AutoNeRF
We present AutoNeRF, a method to collect data required
to train NeRFs using autonomous embodied agents. In our
task setup, the agent is initialized in an unseen environment
and is tasked with gathering data in a single episode with a
fixed time budget. The observations collected by the agent
in this single trajectory are used to train a neural implicit
representation of the scene, which will serve as a compact
and continuous representation of the density, the RGB ap-
pearance, and the semantics of the considered scene. Fi-
nally, the trained scene model is evaluated on several down-
stream tasks in robotics: new view rendering, mapping,
planning and pose refinement.

Corozal Darden Markleeville

Predicted
RGB Mesh

Predicted
Seman3c Mesh

Ground-truth
RGB Mesh

Scene name

Figure 4: Mesh reconstruction: reconstruction of 3 Gibson val scenes extracted from a NeRF model trained on data gathered by our
modular policy. Both geometry, semantics, and appearance are satisfying. Exploration with the modular policy, Ours (obs).

Task Specification — The agent is initialized at a random
location in an unknown scene and at each timestep t can ex-
ecute discrete actions in the space Λ = {FORWARD 25cm,
TURN LEFT 30°, TURN RIGHT 30°}. At each step, the
agent receives an observation ot composed of an egocen-
tric RGB frame and a depth map. The field of view of the
agent is 90◦. It also has access to odometry information.
The agent can navigate for a limited number of 1500 dis-
crete steps.

AutoNeRF can be broken down into two phases: Ex-
ploration Policy Training and NeRF Training. In the first
phase, we train an exploration policy to collect the observa-
tions. The policy is self-supervised, it is trained in a set of
training environments using intrinsic rewards. In the second
phase, we use the trained exploration policy to collect data
in unseen test scenes, one trajectory per scene, and train a
NeRF model using this data. The trained NeRF model is
then evaluated on the set of downstream tasks.

4.1. Exploration Policy Training
As described in Section 3.1, we use a modular exploration
policy architecture with the Global Policy primarily respon-
sible for exploration. We consider different reward signals
for training the Global Policy tailored to our task of scene
reconstruction, and which differ in the importance they give
to different aspects of the scene. All these signals are com-
puted in a self-supervised fashion using the metric map rep-
resentations built by the exploration policy.

Explored area — (Ours (cov.)) optimizes the coverage
of the scene, i.e. the size of the explored area, and has

been proposed in the literature, e.g. in [5, 6]. It accumu-
lates differences in the exploration component mexp

t ,

rcovt =

M−1∑
i=0

M−1∑
j=0

mexp
t [i, j]−mexp

t−1[i, j]

Obstacle coverage — (Ours (obs.)) optimizes the cov-
erage of obstacles in the scene, and accumulates differ-
ences in the corresponding component mocc

t−1[i, j]. It tar-
gets tasks where obstacles are considered more important
than navigable floor space, which is arguably the case
when viewing is less important than navigating.

robst =

M−1∑
i=0

M−1∑
j=0

mocc
t [i, j]−mocc

t−1[i, j]

Semantic object coverage — (Ours (sem.)) optimizes
the coverage of the S semantic classes detected and seg-
mented in the semantic metric map msem

t . This reward
removes obstacles that are not explicitly identified as a
notable semantic class — see section 5 for their defini-
tion.

rsemt =

M−1∑
i=0

M−1∑
j=0

S−1∑
k=0

msem
t [i, j, k]−msem

t−1 [i, j, k]

Viewpoints coverage — (Ours (view.)) optimizes for the
usage of the trained implicit representation as a dense
and continuous representation of the scene usable to ren-
der arbitrary new viewpoints, either for later visualiza-
tion as its own downstream task or for training new
agents in simulation. To this end, we propose to max-
imize coverage not only in terms of agent positions but

also in terms of agent viewpoints. Compared to [5], we
introduce an additional 3D map mview[i, j, k], where the
first two dimensions correspond to spatial 2D positions in
the scene and the third dimension corresponds to a floor
plane angle of the given cell discretized into V=12 bins.
A value of mview

t [i, j, k] = 1 indicates that cell (i, j) has
been seen by the agent from a (discretized) angle k. The
reward maximizes its changes,

rviewt =

M−1∑
i=0

M−1∑
j=0

V−1∑
k=0

mview
t [i, j, k]−mview

t−1 [i, j, k]

4.2. NeRF training
The sequence of observations collected by the agent com-
prises egocentric RGB frames {ot}t=1...T , first-person
semantic segmentations {st}t=1...T and associated poses
{pt}t=1...T in a reference frame, which we define as the
starting position t=0 of each episode. In our experi-
ments, we leverage privileged pose and semantics informa-
tion from simulation. We also conduct an experiment show-
casing the difference between using GT semantics from a
simulator and a Mask R-CNN [19] model.

An important property of this procedure is that no depth
information is required for reconstruction. The implicit rep-
resentation is trained by mapping pixel coordinates xi for
each pixel i to RGB values and semantic values with the
volume rendering loss described in Section 3.2. The input
coordinates xi are obtained using the global poses pt and
intrinsics from calibrated cameras.

4.3. Downstream tasks
Prior work on implicit representations generally focused on
two different settings: (i) evaluating the quality of a neu-
ral field based on its new view rendering abilities given a
dataset of (carefully selected) training views, and (ii) evalu-
ating the quality of a scene representation in robotics condi-
tioned on given (constant) trajectories, evaluated as recon-
struction accuracy. We cast this task in a more holistic way
and more aligned with our scene understanding objective.
We evaluate the impact of trajectory generation (through
exploration policies) directly on the quality of the represen-
tation, which we evaluate in a goal-oriented way through
multiple tasks related to robotics (cf. Figure 2).

Task 1: Rendering — This task is the closest to the eval-
uation methodology prevalent in the neural field literature.
We evaluate the rendering of RGB and semantic frames as
proposed in [54]. Unlike the common method of evaluating
an implicit representation on a subset of frames within the
trajectory, we evaluate it on a set of uniformly sampled cam-
era poses within the scene, independently of the trajectory
taken by the policy. This allows us to evaluate the represen-
tation of the complete scene and not just its interpolation
ability.

We render ground-truth images and semantic masks as-
sociated with sampled camera poses using the Habitat [38,
42] simulator and compare them against the NeRF render-
ing. RGB rendering metrics are PSNR (Peak Signal-to-
Noise Ratio), SSIM (Structural Similarity Index Measure)
and LPIPS [53]. Rendering of semantics is evaluated in
terms of average per-class accuracy and mean intersection
over union (mIoU).

Task 2: Metric Map Estimation — While rendering qual-
ity is linked to the perception of the scene, it is not nec-
essarily a good indicator of its structural content, which is
crucial for robotic downstream tasks. We evaluate the qual-
ity of the estimated structure by translating the continuous
representation into a format, which is very widely used in
map-and-plan baselines for navigation, a top-down (bird’s-
eye-view=BEV) map storing occupancy and semantic cate-
gory information and compare it with the ground-truth from
the simulator. We evaluate obstacle and semantic maps us-
ing accuracy, precision, and recall.

Task 3: Planning — Using maps for navigation, it is dif-
ficult to pinpoint the exact precision required for success-
ful planning, as certain artifacts and noises might not have
a strong impact on reconstruction metrics, but could lead
to navigation problems, and vice-versa. We perform goal-
oriented evaluation and measure to what extent path plan-
ning can be done on the obtained top-down maps.

We sample 100 points on each scene and plan from
those starting points to two different types of goals: to se-
lected end positions, PointGoal planning, and to objects
categories, ObjectGoal planning. The latter, ObjectGoal,
requires planning the shortest path from the given starting
point to the closest object of each semantic class available
on the given scene. For both tasks, we plan with the Fast
Marching Method and report both mean Success and SPL
as introduced in [2]. For a given episode, Success is 1 if
planning stops less than 1m from from the goal, and SPL
measures path efficiency.

Task 4: Pose Refinement — This task introduced in [50]
involves correcting an initial noisy camera position and as-
sociated rendered view and optimizing the position until
a given ground-truth position is reached, which is given
through its associated rendered view only. The optimization
process therefore leads to a trajectory in camera pose space.
This task is closely linked to visual servoing with a “eye-
in-hand” configuration, a standard problem in robotics, in
particular in its “direct” variant [23], where the optimiza-
tion is directly performed over losses on the observed pixel
space.

We address this problem by taking the trained NeRF
model f and freezing its weights θ. In what follows, we will
denote the function rendering a full image o given camera
pose c and viewing direction ϕ as o = R(c, ϕ). Then, given

Fron%er Explora%on

Step 67 Step 105 Step 159 Step 177 Step 1499

Step 1499Step 88 Step 493 Step 795 Step 980

Ours (obs.)

Figure 5: Rollouts by Frontier Based exploration vs. Modular policy (obs cov): FBE properly covers the scene, but does not collect a
large diversity of viewpoints, while the modular policy enters the rooms and thus provides richer training data for the neural field.

Figure 6: Navigating in the Habitat simulator: the underlying
mesh was extracted from the trained NeRF, Ours (cov). Rendering
quality and the generated BEV map are correct, as are free naviga-
ble space and collision handling. Temporal order indicated by .

a ground truth view o∗, the camera position and direction
can be directly optimized from a starting position (c, ϕ)[0]

with gradient descent as

(c, ϕ)[t+1] = (c, ϕ)[t] + ν

[
∂L(o∗,R(c, ϕ)

∂c, ϕ

]
,

where L is the MSE (Mean Squared Error) loss and ν is a
learning rate.

To generate episodes of starting and end positions, we
take 100 sampled camera poses in each scene and apply a
random transformation to generate noisy poses. The model
is evaluated in terms of rotation and translation convergence
rate, i.e. percentage of samples where the final difference
with ground truth is less than 3◦ in rotation and 2cm in
translation. We also report the mean translation and rota-
tion errors for the converged samples.

5. Experimental Results
Modular Policy training — is performed on one V100
GPU for 7 days. All modular policies are trained on the 25
scenes of the Gibson [46]-tiny training set. The used Mask
R-CNN model is pre-trained on the MS COCO dataset [22]
and finetuned on Gibson train scenes. We consider S=15

semantic categories: {chair, couch, potted plant, bed, toi-
let, tv, dining table, oven, sink, refrigerator, book, clock,
vase, cup, bottle}.

External baselines — We compare our trained modular
policies against the classical frontier-based exploration al-
gorithm (Frontier), as well as end-to-end policies trained
with RL. More specifically, we consider 4 end-to-end poli-
cies from [35], that all share the same architecture but were
trained with different exploration-related reward functions:
coverage (E2E (cov.)), curiosity (E2E (cur.)), novelty (E2E
(nov.)), reconstruction (E2E (rec.)). Reward functions are
presented in [35].

Evaluation — consists in running 5 rollouts with different
start positions in each of the 5 Gibson-tiny val scenes for
each policy, always on the first house floor. A NeRF model
is then trained on each trajectory data.

NeRF models — In our experiments, we consider two dif-
ferent NeRF variants presented in 3.2. Most experiments
are conducted with Semantic Nerfacto, as it provides a great
trade-off between training speed and quality of represen-
tation. Semantic Nerfacto is built on top of the Nerfacto
model from the nerfstudio [44] library. We augment the
model with a semantic head and implement evaluation on
test camera poses independently from the collected trajec-
tory. Only the next subsection (5.2) will involve training a
vanilla Semantic NeRF model, more precisely the one in-
troduced in [54] that also contains a semantic head. We
chose this variant for these specific experiments to illus-
trate the possibility of providing high-fidelity representa-
tions of complex scenes, and show that a vanilla Semantic
NeRF model trained for a longer time (12h) leads to better-
estimated geometry. Results from Semantic Nerfacto are
still very good (see Figures 7 and 8) but we found meshes
to be higher quality with a vanilla NeRF model.

GT map Predicted map

BEV map genera3on PointGoal planning

Goal: po#ed plantGoal: bed

ObjectGoal planning

Goal: refrigerator

Figure 7: BEV map tasks: Generation of semantic BEV maps (Left), PointGoal (Middle) and ObjectGoal planning (Right).

Policy Success ↑ SPL ↑
Finetuned on Gibson meshes (not comparable)† 99.7 97.9
Pre-trained (no finetuning) 90.2 82.9
Finetuned on AutoNeRF meshes 92.9 86.7
Table 1: PointGoal Finetuning: finetuning a PointGoal agent on
a mesh automatically collected from a rollout and a NERF with
AutoNERF improves mean performance over a pre-trained pol-
icy on a specific scene. † an upper bound which finetunes on the
original mesh. In a real use case involving a robot automatically
collecting data, this mesh would not be available (not compara-
ble).

RGB Semantics
Policy PSNR ↑ SSIM ↑ LPIPS ↓ Per-class acc ↑ mIoU ↑
Frontier 19.75 0.743 0.343 81.4 65.7
E2E (cov.) 20.94 0.750 0.332 80.1 63.9
E2E (cur.) 20.60 0.747 0.338 78.7 61.9
E2E (nov.) 23.36 0.801 0.268 84.6 71.4
E2E (rec.) 23.17 0.797 0.270 84.1 70.5
Ours (cov.) 24.89 0.837 0.218 90.2 81.2
Ours (sem.) 25.34 0.843 0.207 91.9 81.8
Ours (obs.) 25.56 0.846 0.203 91.8 83.2
Ours (view.) 25.17 0.842 0.211 91.3 82.0

Table 2: Rendering performance on uniformed sampled view-
points of the full scene after training on a single trajectory.

Occupancy Semantics
Policy Acc. ↑ Prec. ↑ Rec. ↑ Acc ↑ Prec. ↑ Rec. ↑
Frontier 81.2 86.9 49.9 99.7 26.6 21.0
E2E (cov.) 77.1 86.2 50.4 99.7 22.1 16.1
E2E (cur.) 81.8 90.3 50.7 99.7 19.2 12.5
E2E (nov.) 83.1 88.7 61.3 99.7 25.5 18.3
E2E (rec.) 81.6 87.6 60.0 99.7 26.2 18.0
Ours (cov.) 86.8 89.1 74.7 99.8 35.1 27.1
Ours (sem.) 86.6 88.3 76.5 99.8 35.7 29.8
Ours (obs.) 86.4 89.4 76.5 99.8 36.2 29.8
Ours (view.) 88.1 90.9 77.0 99.8 37.4 30.2

Table 3: Map Estimation Performance: comparison of BEV
maps estimated from the NeRF.

5.1. Reconstructing house-scale scenes
We illustrate the possibility of autonomously reconstruct-
ing complex large-scale environments such as apartments
or houses from the continuous representations trained on
data collected by agents exploring the scene using the mod-
ular policy. Figure 4 shows RGB and semantic meshes for

3 Gibson val scenes. Geometry, appearance, and semantics
are satisfying. In Figure 6 we show that such meshes can be
loaded into the Habitat simulator and allow proper naviga-
tion and collision computations. Both occupancy top-down
map generation and RGB renderings are performed by the
Habitat simulator from the generated mesh.

5.2. Autonomous adaptation to a new scene
A long-term goal of Embodied AI is to train general policies
that can be deployed on any new scene. Even such agents
will likely struggle with some specificities of a given envi-
ronment, and a scene-specific adaptation thus appears as a
relevant solution. We explore the usage of AutoNERF to
explore an environment to build a 3D representation, which
is then loaded into a simulator to safely finetune a policy of
interest. More specifically, we consider a depth-only Point-
Goal navigation policy pre-trained on Gibson. It is fine-
tuned on 4 Gibson val scenes, using meshes generated with
AutoNeRF, before being evaluated on the original Gibson
meshes. Details about episodes sampling and training hy-
perparameters are given in the Supplementary Material.

As shown in Table 1, scene-specific finetuning on au-
tonomously reconstructed 3D meshes allows to improve
both Success and SPL. We also compare with finetun-
ing directly on the Gibson mesh, which provides a non-
comparable soft upper bound — in a real robotics scenario,
these meshes would not be accessible. This shows that per-
formance could still be improved, but it is important to note
that reaching the performance of the upper bound might be
about reconstructing fine details.

5.3. Quantitative results

Frontier Exploration vs Modular Policy — as can be
seen from the quantitative comparisons on the different
downstream tasks (Tables 2, 3, 4, 5), RL-trained modular
policies outperform frontier exploration on all metrics and
should thus be considered as the preferred means of col-
lecting NeRF data. This is a somewhat surprising result,
since Frontier Based Exploration generally performs sat-
isfying visual coverage of the scene, even though it can
sometimes get stuck because of map inaccuracies. This

PointGoal ObjectGoal
Policy Succ. ↑ SPL ↑ Succ. ↑ SPL ↑
Frontier 22.4 21.4 9.6 9.1
E2E (cov.) 30.0 29.3 8.9 8.3
E2E (cur.) 29.8 29.2 8.5 8.0
E2E (nov.) 32.3 31.9 11.4 10.8
E2E (rec.) 32.8 32.6 10.5 10.0
Ours (cov.) 39.5 39.0 14.8 14.3
Ours (sem.) 37.7 37.4 16.0 15.4
Ours (obs.) 38.2 37.8 15.8 15.3
Ours (view.) 39.0 38.6 15.9 15.3

Table 4: Planning performance on the BEV maps estimated
from the NeRF obtained with the Fast Marching method.

Policy Conv. rate ↑ Rot. Error (◦) ↓ Trans. Error (m)↓
Frontier 7.2 0.383 0.00955
E2E (cov.) 15.4 0.319 0.00775
E2E (cur.) 12.5 0.325 0.00799
E2E (nov.) 19.4 0.315 0.00774
E2E (rec.) 19.3 0.292 0.00734
Ours (cov.) 20.2 0.283 0.00734
Ours (sem.) 23.0 0.319 0.00784
Ours (obs.) 22.5 0.305 0.00765
Ours (view.) 21.1 0.316 0.00769

Table 5: Pose Refinement: optimizing camera viewpoints given
a rendered target viewpoint.

Task Metrics Sim. Mask R-CNN

Rendering Per-class acc. 91.8 65.4
mIoU 83.2 61.1

Map comparison Sem acc. 99.8 99.7
Sem prec. 36.2 14.1
Sem rec. 29.8 8.5

Planning ObjGoal Succ. 15.8 6.8
ObjGoal SPL 15.3 6.5

Table 6: NeRF semantic maps: impact of the choice of ground-
truth semantics vs. semantics estimated by Mask R-CNN when
data is collected by Ours (obs.).

shows that vanilla visual coverage, the optimized metrics in
many exploration-oriented tasks, is not a sufficient criterion
to collect data for NeRF training. Figure 5 illustrates this
point with rollouts from FBE and a modular policy trained
to maximize obstacle coverage. FBE properly covers the
scene but does not necessarily cover a large diversity of
viewpoints, while the modular policy provides richer train-
ing data to the NeRF.

End-to-end Policy vs Modular Policy — Tables 2, 3, 4,
5 also show that the modular policies outperform end-to-
end RL policies on all considered metrics. Interestingly,
novelty and reconstruction seem to be the best reward func-
tions when training end-to-end policies if the final goal is to
autonomously collect data to build a NeRF model.

Comparing trained policies — Rewarding modular poli-
cies with obstacles (Ours (obs.)) and viewpoints (Ours
(view.)) coverage appears to lead to the best overall per-
formance when we consider the different metrics. Explored
area coverage (Ours (cov.)) leads to highest PointNav per-

RGB

Sem.

Rendered GT

Figure 8: Quality of semantic rendering on pairs of images of
different scenes, compared with GT from Sim. Ours (obs).

formance, corroborating its importance for geometric tasks,
whereas other semantic reward functions lead to higher Ob-
jectNav performance, again corroborating its importance
for semantic understanding of the scene.
Semantics from Mask R-CNN — Table 6 shows the im-
pact of using Mask R-CNN to compute the semantics train-
ing data of the NeRF model vs semantics from simulation.
As expected, performance drops because Mask R-CNN pro-
vides a much noisier training signal, which could partly
be explained by the visual domain gap between the real
world and simulators. However, performance on the dif-
ferent downstream tasks is still reasonable, showing that
one could autonomously collect data and generate seman-
tics training signal without requiring additional annotation.

5.4. Qualitative results
BEV maps — Figure 7 gives examples of the BEV maps
generated from the continuous representation: structural de-
tails and dense semantic information are nicely recovered
(Left). Planned trajectories are close to the shortest paths,
for both PointGoal tasks (Middle) and ObjectGoal (Right).
Semantic rendering — Figure 8 compares the segmenta-
tion maps and RGB frames rendered with the continuous
representation (trained with semantic masks from simula-
tion) to the GT maps from the simulator. Again, the struc-
ture of the objects and even fine details are well recovered,
and only very local noise is visible in certain areas. The
semantic reconstruction is satisfying.

6. Conclusion
This work introduces a task involving navigating in a 3D en-
vironment to collect NeRF training data. We show that RL-
trained modular policies outperform classic Frontier Based
Exploration as well as other end-to-end RL baselines on this
task, and compare different training reward functions. We
also suggest evaluating NeRF from a scene-understanding
point of view and with robotics-oriented tasks: BEV map
generation, planning, rendering, and camera pose refine-
ment. Finally, we show that it is possible with the consid-
ered method to reconstruct house-scale scenes. Interesting
future work could target fine-tuning navigation models au-
tomatically on a scene.

References
[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural ra-
diance world. RA-L, 2022. 2

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. arXiv preprint, 2018. 5

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real
environments. In CVPR, 2018. 1

[4] Devendra Singh Chaplot, Murtaza Dalal, Saurabh Gupta,
Jitendra Malik, and Russ R Salakhutdinov. Seal: Self-
supervised embodied active learning using exploration and
3d consistency. In NeurIPS, 2021. 1

[5] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Ruslan Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In NeurIPS, 2020. 1,
3, 4, 5

[6] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-
plore using active neural slam. In ICLR, 2020. 1, 2, 3, 4

[7] Devendra Singh Chaplot, Helen Jiang, Saurabh Gupta, and
Abhinav Gupta. Semantic curiosity for active visual learn-
ing. In ECCV, 2020. 1

[8] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam for vi-
sual navigation. In CVPR, 2020. 1

[9] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning
exploration policies for navigation. In ICLR, 2019. 1, 2

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[11] Matt Deitke, Dhruv Batra, Yonatan Bisk, Tommaso Campari,
Angel X Chang, Devendra Singh Chaplot, Changan Chen,
Claudia Pérez D’Arpino, Kiana Ehsani, Ali Farhadi, et al.
Retrospectives on the embodied ai workshop. arXiv preprint,
2022. 1

[12] Christian Dornhege and Alexander Kleiner. A frontier-void-
based approach for autonomous exploration in 3d. Advanced
Robotics, 2013. 2

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In CVPR, 2017. 2

[14] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In ICCV, 2021. 1, 2

[15] Theophile Gervet, Soumith Chintala, Dhruv Batra, Jitendra
Malik, and Devendra Singh Chaplot. Navigating to objects
in the real world. arXiv preprint, 2022. 1

[16] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In CVPR, 2018.
2

[17] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. Cognitive mapping and plan-
ning for visual navigation. In CVPR, 2017. 1

[18] Meera Hahn, Devendra Singh Chaplot, Shubham Tulsiani,
Mustafa Mukadam, James M Rehg, and Abhinav Gupta. No
rl, no simulation: Learning to navigate without navigating.
In NeurIPS, 2021. 1

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 3, 5

[20] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven
Behnke. Evaluating the efficiency of frontier-based explo-
ration strategies. In ISR, 2010. 2

[21] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra,
and Stefan Lee. Beyond the nav-graph: Vision-and-language
navigation in continuous environments. In ECCV, 2020. 1

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 6

[23] Eric Marchand. Direct visual servoing in the frequency do-
main. RA-L, 2020. 5

[24] Pierre Marza, Laetitia Matignon, Olivier Simonin, and
Christian Wolf. Multi-object navigation with dynamically
learned neural implicit representations. arXiv preprint
arXiv:2210.05129, 2022. 2

[25] Pierre Marza, Laetitia Matignon, Olivier Simonin, and
Christian Wolf. Teaching agents how to map: Spatial rea-
soning for multi-object navigation. In IROS, 2022. 1

[26] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition. In
IROS, 2015. 2

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 2

[28] Lina Mezghan, Sainbayar Sukhbaatar, Thibaut Lavril, Olek-
sandr Maksymets, Dhruv Batra, Piotr Bojanowski, and Kar-
teek Alahari. Memory-augmented reinforcement learning for
image-goal navigation. In IROS, 2022. 1

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3

[30] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar,
Yonatan Bisk, and Ruslan Salakhutdinov. Film: Following
instructions in language with modular methods. In ICLR,
2022. 1

[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. 2022. 1, 2

[32] Xuran Pan, Zihang Lai, Shiji Song, and Gao Huang. Ac-
tivenerf: Learning where to see with uncertainty estimation.
In ECCV, 2022. 2

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 2

[34] Santhosh K. Ramakrishnan, Devendra Singh Chaplot, Ziad
Al-Halah, Jitendra Malik, and Kristen Grauman. Poni: Po-
tential functions for objectgoal navigation with interaction-
free learning. In CVPR, 2022. 1

[35] Santhosh K Ramakrishnan, Dinesh Jayaraman, and Kristen
Grauman. An exploration of embodied visual exploration.
International Journal of Computer Vision, 2021. 2, 6

[36] Ram Ramrakhya, Eric Undersander, Dhruv Batra, and Ab-
hishek Das. Habitat-web: Learning embodied object-search
strategies from human demonstrations at scale. In CVPR,
2022. 1

[37] Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael
Marinier, Marc Pollefeys, Timothy Lillicrap, and Sylvain
Gelly. Episodic curiosity through reachability. In ICLR,
2018. 1, 2

[38] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. In
ICCV, 2019. 5

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint, 2017. 3

[40] James A Sethian. A fast marching level set method for mono-
tonically advancing fronts. 1996. 3

[41] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. imap: Implicit mapping and positioning in real-time. In
ICCV, 2021. 2

[42] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wo-
jciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat
2.0: Training home assistants to rearrange their habitat. In
NeurIPS, 2021. 5

[43] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In CVPR, 2022. 1

[44] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, et al. Nerfstudio: A
modular framework for neural radiance field development.
arXiv preprint, 2023. 3, 6

[45] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi SM Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes.
arXiv preprint, 2021. 1

[46] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world percep-
tion for embodied agents. In CVPR, 2018. 6

[47] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. arXiv preprint, 2021. 1, 2

[48] Kai Xu, Lintao Zheng, Zihao Yan, Guohang Yan, Eugene
Zhang, Matthias Niessner, Oliver Deussen, Daniel Cohen-
Or, and Hui Huang. Autonomous reconstruction of unknown
indoor scenes guided by time-varying tensor fields. 2017. 2

[49] Brian Yamauchi. A frontier-based approach for autonomous
exploration. In CIRA, 1997. 2

[50] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Inverting
neural radiance fields for pose estimation. In IROS, 2021. 2,
5

[51] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, 2021. 1, 2

[52] Huangying Zhan, Jiyang Zheng, Yi Xu, Ian Reid, and Hamid
Rezatofighi. Activermap: Radiance field for active mapping
and planning. 2022. 2

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[54] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding
with implicit scene representation. In ICCV, 2021. 1, 2, 3, 5,
6

[55] Shuaifeng Zhi, Edgar Sucar, Andre Mouton, Iain Haughton,
Tristan Laidlow, and Andrew J Davison. ilabel: Interactive
neural scene labelling. arXiv preprint, 2021. 1

[56] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-
hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 1

[57] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui,
Martin R Oswald, Andreas Geiger, and Marc Pollefeys.
Nicer-slam: Neural implicit scene encoding for rgb slam.
arXiv preprint, 2023. 2

[58] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
CVPR, 2022. 2

